

Connecting Networks: Urban to Rural Broadband India Summit 2024

Saket Saraogi

New Delhi, October 2024

Network Topology Choices

All modelling analysis based on aerial installation utilizing 'Non-Hardened Connectivity'

COMMSCOPE®

COMMSCOPE[®]

Centralized Architecture

Pros	Cons
Centralized fiber configuration location	High Fiber count cables
Maximum Network flexibility	Increased splice quantity
Consolidated splice locations	Increased permitting requirements
	Increased civils requirements

Centralized Architecture

Distributed Architecture

Cons

Multiple Splice locations

Mid-sheath access at each terminal & splitter location

Distributed Architecture

Optical line

termination

COMMSCOPE[®]

1:8

1x8 splitter

Multi-level Splitters Cascaded Within The Network

1:8

1x8 splitter

Cascaded Star Architecture

Cons Pros

Reduced Fiber Counts – Reduced Splicing

Smaller Cable Diameters

Reduced Permitting Requirements (no cabinet)

Higher Splicing Locations

Cascaded Star Architecture

Cascaded – Daisy Chain Architecture

Cable Accessed At Each Terminal Location And Spliced To Splitter

Pros	Cons
Reduced Fiber Counts – Reduced Splicing	Increased number of splicing locations
Smaller Cable Diameters	Mid-span cable prep at terminal locations
Re-use of distribution fibers within cable	
No-overhauling of cables	
Simple Point-to-Point inclusion	
Minimal pre-engineering efforts, enables deferred terminal placement	

Cascaded – Daisy Chain Architecture

Pros

Smaller cable diameters Faster speed of deployment Low installation skills required Significantly reduced splicing needs

*Flexible ODN allows Feeder and Distribution on same cable

FDC

FAT

For fiber serving area of **2048** homes*

	Splice	Connectorised
Total splices:	608	32 [95% reduction]
No splice locations:	144	16 [89% reduction]

Benefits:

- Speed of deployment VERY FAST with connectorised plug and play for fast turn up
- Low labour skills splicing only on input fiber (day 1 activity only)
- Quality & performance factory terminated cable assemblies

* Requires 16 FDC and 128 FAT

Two key products: FDT & FAT A single FAT type – **simple** Different cable lengths – **optimised products** Add-on modules for FATs – **flexible design** S1 splitters in FAT add-on modules – **efficient design** A single cable between FATs – **less fibre**

Indexed FAT

FLXTM ODN

Based on the analysis, CommScope FLX[™] ODN Solution **can be constructed 43% quicker** as compared to the traditional splice solution. With this time savings the sites can be quicker to market and help Airtel accelerate Return on Investment (ROI)

For example, a 25M Homes passed **ODN construction program taking an average of 3 yrs to build, which can be reduced to 1.7** yrs using CommScope FLX ODN solution

> 30% cost Investment In Materials

> > Cost

Cascaded Optical Tap Architecture

Pros	Cons
Very lean fiber network topology	Inventory holding of various TAP ratios
Reduced splicing needs	
Best efficiency of OLT optical power	

TAP Cascaded PON

Cascaded Optical Tap Architecture

MDU Tap Terminal

COMMSCOPE[®]

now meets next